Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 102(6): 1336-1352, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783571

RESUMEN

Despite the successful reduction in the malaria health burden in recent years, it continues to remain a significant global health problem mainly because of the emerging resistance to first-line treatments. Also because of the disruption in malaria prevention services during the COVID-19 pandemic, there was an increase in malaria cases in 2021 compared to 2020. Hence, the present study outlined the in silico study, synthesis, and antimalarial evaluation of 1,3,5-triazine hybrids conjugated with PABA-glutamic acid. Docking study revealed higher binding energy compared to the originally bound ligand WR99210, predominant hydrogen bond interaction, and involvement of key amino acid residues, like Arg122, Ser120, and Arg59. Fourteen compounds were synthesized using traditional and microwave synthesis. The in vitro antimalarial evaluation against chloroquine-sensitive 3D7 and resistant Dd2 strain of Plasmodium falciparum showed a high to moderate activity range. Compounds C1 and B4 showed high efficacy against both strains and a further study revealed that compound C1 is non-cytotoxic against the HEK293 cell line with no acute oral toxicity. In vivo, study was performed for the most potent antimalarial compound C1 to optimize the research work and found to be effectively suppressing parasitemia of Plasmodium berghei strain in the Swiss albino mice model.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Ácido Glutámico/uso terapéutico , Ácido 4-Aminobenzoico/uso terapéutico , Oxidorreductasas , Ácido Fólico , Células HEK293 , Pandemias , Malaria/tratamiento farmacológico , Triazinas/farmacología , Triazinas/química
2.
J Trop Med ; 2023: 6678627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706052

RESUMEN

Wolbachia, a Gram-negative intracellular bacterium, naturally infects many arthropods, including mosquito vectors responsible for the spread of arboviral diseases such as Zika, chikungunya, and dengue fever. Certain Wolbachia strains are involved in inhibiting arbovirus replication in mosquitoes, and this phenomenon is currently being studied to combat disease vectors. A study was conducted in four states in north-eastern India to investigate the presence of natural Wolbachia infection in wild-caught Aedes albopictus and Aedes aegypti mosquitoes, the established vectors of dengue. The detection of a Wolbachia infection was confirmed by nested PCR and sequencing in the two mosquito species Ae. aegypti and Ae. albopictus. Positivity rates observed in Ae. aegypti and Ae. albopictus pools were 38% (44 of 115) and 85% (41 of 48), respectively, and the difference was significant (chi-square = 28.3174, p = 0.00000010). Sequencing revealed that all detected Wolbachia strains belonged to supergroup B. Although Wolbachia infection in Ae. aegypti has been previously reported from India, no such reports are available from north-eastern India. Data on naturally occurring Wolbachia strains are essential for selecting the optimal strain for the development of Wolbachia-based control measures. This information will be helpful for the future application of Wolbachia-based vector control measures in this part of the country.

3.
Int J Biol Macromol ; 253(Pt 4): 126715, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673136

RESUMEN

For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Selenio , Humanos , Antioxidantes/farmacología , Selenio/farmacología , Arsénico/farmacología , Cobre/farmacología , Intoxicación por Arsénico/prevención & control , Polifenoles/farmacología , Zinc/farmacología , Estrés Oxidativo , Inflamación , Pectinas/farmacología , Antiinflamatorios/farmacología
4.
Mol Biochem Parasitol ; 253: 111543, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642385

RESUMEN

The mosquito gut microbiota is vital to the proper functioning of the host organism. Mosquitoes may benefit from this microbiota in their guts because it promotes factors including blood digestion, fecundity, metamorphosis, and living habitat and inhibits malarial parasites (Plasmodium) growth or transmission. In this overview, we analyzed how mosquitoes acquire their gut microbiota, characterized those bacteria, and discussed the functions they provide. We also investigated the effects of microbiota on malaria vectors, with a focus on the mosquito species Anopheles, as well as the relationship between microbiota and Plasmodium, the aspects in which microbiota influences Plasmodium via immune response, metabolism, and redox mechanisms, and the strategies in which gut bacteria affect the life cycle of malaria vectors and provide the ability to resist insecticides. This article explores the difficulties in studying triadic interactions, such as the interplay between Mosquitoes, Malarial parasite, and the Microbiota that dwell in the mosquitoes' guts, and need additional research for a better understanding of these multiple connections to implement an exact vector control strategies using Gut microbiota in malaria control.


Asunto(s)
Anopheles , Malaria , Microbiota , Parásitos , Plasmodium , Animales , Humanos , Mosquitos Vectores/microbiología , Mosquitos Vectores/parasitología , Interacciones Huésped-Parásitos , Plasmodium/fisiología , Malaria/parasitología , Anopheles/parasitología
5.
Molecules ; 27(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080424

RESUMEN

Heavy metals and metalloids like cadmium, arsenic, mercury, and lead are frequently found in the soil, water, food, and atmosphere; trace amounts can cause serious health issues to the human organism. These toxic trace elements (TTE) affect almost all the organs, mainly the heart, kidney, liver, lungs, and the nervous system, through increased free radical formation, DNA damage, lipid peroxidation, and protein sulfhydryl depletion. This work aims to advance our understanding of the mechanisms behind lipid accumulation via increased free fatty acid levels in circulation due to TTEs. The increased lipid level in the myocardium worsens the heart function. This dysregulation of the lipid metabolism leads to damage in the structure of the myocardium, inclusive fibrosis in cardiac tissue, myocyte apoptosis, and decreased contractility due to mitochondrial dysfunction. Additionally, it is discussed herein how exposure to cadmium decreases the heart rate, contractile tension, the conductivity of the atrioventricular node, and coronary flow rate. Arsenic may induce atherosclerosis by increasing platelet aggregation and reducing fibrinolysis, as exposure interferes with apolipoprotein (Apo) levels, resulting in the rise of the Apo-B/Apo-A1 ratio and an elevated risk of acute cardiovascular events. Concerning mercury and lead, these toxicants can cause hypertension, myocardial infarction, and carotid atherosclerosis, in association with the generation of free radicals and oxidative stress. This review offers a complete overview of the critical factors and biomarkers of lipid and TTE-induced cardiotoxicity useful for developing future protective interventions.


Asunto(s)
Arsénico , Mercurio , Metales Pesados , Oligoelementos , Arsénico/toxicidad , Cadmio/toxicidad , Humanos , Lípidos , Mercurio/toxicidad , Metales Pesados/química , Oligoelementos/toxicidad
6.
Vaccines (Basel) ; 10(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36146567

RESUMEN

Oral cancer is a significant non-communicable disease affecting both emergent nations and developed countries. Squamous cell carcinoma of the head and neck represent the eight major familiar cancer types worldwide, accounting for more than 350,000 established cases every year. Oral cancer is one of the most exigent tumors to control and treat. The survival rate of oral cancer is poor due to local invasion along with recurrent lymph node metastasis. The tumor microenvironment contains a different population of cells, such as fibroblasts associated with cancer, immune-infiltrating cells, and other extracellular matrix non-components. Metastasis in a primary site is mainly due to multifaceted progression known as epithelial-to-mesenchymal transition (EMT). For the period of EMT, epithelial cells acquire mesenchymal cell functional and structural characteristics, which lead to cell migration enhancement and promotion of the dissemination of tumor cells. The present review links the tumor microenvironment and the role of EMT in inflammation, transcriptional factors, receptor involvement, microRNA, and other signaling events. It would, in turn, help to better understand the mechanism behind the tumor microenvironment and EMT during oral cancer.

7.
3 Biotech ; 12(8): 170, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35845109

RESUMEN

Antimalarial drug resistance is a major threat due to the emerging resistance to all the available drugs in the market. In an approach to develop alternative drugs, a novel class of Pf-DHFR inhibitors was developed using pyrimidine as the core nucleus and substituting the 4- and 6- positions with amines and 4-amino benzoic acid (PABA) to avoid the problem of drug resistance. The resultant compounds 3(a-j) after primary in silico screening and filtering were synthesized using microwave efficiently in high yield and reduced time period compared to conventional synthesis. The antimalarial assay was performed in vitro, against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum using chloroquine as a reference standard. The IC50 values were in the range of 5.26-106.76 µg/ml for 3D7 and in Dd2 the value ranges from 4.71 to 112.98 µg/ml. Compounds 3d, 3e, 3f and 3h showed significant antimalarial activity against both the strains of P. falciparum with no cytotoxicity against fibroblast cell line and 3f was found to be the most potent among them. The hemolysis assay of all the compounds in fresh erythrocytes showed insignificant hemolysis below 5% at a higher dose level. Hence, the present study suggests the possible utility of PABA-substituted pyrimidine scaffold for further development of new Pf-DHFR inhibitors. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03236-w.

8.
Cardiovasc Toxicol ; 22(5): 436-461, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35157213

RESUMEN

Cardiotoxicity by anthracycline antineoplastic drug doxorubicin is one of the systemic toxicity of the cardiovascular system. The mechanism responsible for doxorubicin cardiotoxicity and lipid metabolism remains elusive. The current study tested the hypotheses that the role of peroxisome proliferator-activated receptor α (PPARα) in the progress of doxorubicin-induced cardiomyopathy and its mechanism behind lipid metabolism. In the present study, male rats were subjected to intraperitoneal injection (5-week period) of doxorubicin with different dosages such as low dosage (1.5 mg/kg body weight) and high dosage (15 mg/kg body weight) to induce doxorubicin cardiomyopathy. Myocardial PPARα was impaired in both low dosage and high dosage of doxorubicin-treated rats in a dose-dependent manner. The attenuated level of PPARα impairs the expression of the genes involved in mitochondrial transporter, fatty acid transportation, lipolysis, lipid metabolism, and fatty acid oxidation. Moreover, it disturbs the reverse triacylglycerol transporter apolipoprotein B-100 (APOB) in the myocardium. Doxorubicin elevates the circulatory lipid profile and glucose. Further aggravated lipid profile in circulation impedes the metabolism of lipid in cardiac tissue, which causes a lipotoxic condition in the heart and subsequently associated disease for the period of doxorubicin treatment. Elevated lipids in the circulation translocate into the heart dysregulates lipid metabolism in the heart, which causes augmented oxidative stress and necro-apoptosis and mediates lipotoxic conditions. This finding determines the mechanistic role of doxorubicin-disturbed lipid metabolism via PPARα, which leads to cardiac dysfunction.


Asunto(s)
Cardiomiopatías , PPAR alfa , Animales , Peso Corporal , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Ácidos Grasos/metabolismo , Corazón/efectos de los fármacos , Metabolismo de los Lípidos , Masculino , Miocardio/metabolismo , PPAR alfa/metabolismo , Ratas
9.
Life Sci ; 260: 118431, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946915

RESUMEN

Coronavirus disease 2019 (COVID-19) is a prominent pandemic disease that emerged in China and hurriedly stretched worldwide. There are many reports on COVID-19 associated with the amplified incidence of thrombotic events. In this review, we focused on COVID-19 coupled with the coagulopathy contributes to severe outcome inclusive of comorbidities such as venous thromboembolism, stroke, diabetes, lung, heart attack, AKI, and liver injury. Initially, the COVID-19 patient associated coagulation disorders show an elevated level of the D-dimer, fibrinogen, and less lymphocyte count such as lymphopenia. COVID-19 associated with the Kawasaki disease has acute vasculitis in childhood which further affects the vessels found all over the body. COVID-19 linked with the thrombotic microangiopathy triggers the multiple vasculitis along with the arterioles thrombosis, medium, large venous and arterial vessels mediates the disseminated intravascular coagulation (DIC). SARS-Co-V-2 patients have reduced primary platelet production, increased destruction of the platelet, decreased circulating platelet leads to the condition of increased thrombocytopenia which contributes to the coagulation disorder. Endothelial dysfunction plays an important role in the coagulation disorders via increased generation of the thrombin and stops fibrinolysis further leads to hypercoagulopathy. Along with that endothelial dysfunction activates the complement system pathways and contributes to the acute and chronic inflammation via cytokine storm with the production of the cytokines and chemokines, coagulation in different organs such as lung, brain, liver, heart, kidney and further leads to multi-organ failure.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Trastornos de la Coagulación Sanguínea/etiología , Infecciones por Coronavirus/complicaciones , Insuficiencia Multiorgánica/etiología , Neumonía Viral/complicaciones , Trastornos de la Coagulación Sanguínea/patología , COVID-19 , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Humanos , Insuficiencia Multiorgánica/patología , Pandemias , Neumonía Viral/transmisión , Neumonía Viral/virología , Pronóstico , SARS-CoV-2
10.
Life Sci ; 212: 37-58, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30267786

RESUMEN

Arsenic is a natural metalloid found in abundance, in the environment. Exposure to arsenic can cause health issues due to its carcinogenic nature. The primary source of arsenic contact is drinking water. Exposure to arsenic in drinking water can cause reproductive dysfunction in males through a reduction in testes weight, accessory sex organ weight, viability, and motility of sperm, epididymal sperm count, decreased gonadotrophins level, decreased testosterone, and steroidogenesis disruption. This review focuses on the mechanisms by which arsenic impairs the quality of semen, based on epidemiological observations in humans, and experimental studies in different biological research models. Arsenic-mediated male reproductive toxicity can be induced by various mechanisms such as inhibition of spermatogenesis, testosterone pathway hinderance, oxidative stress, inflammation, genotoxic effects, activation of heat shock proteins, and activation of a signaling pathway in testes (ERK/AKT/NF-kB signaling pathway), among others. The interplay between the principal mechanisms involved needs to be elucidated further in future since an overall examination of arsenic-mediated male reproductive toxicity is still a deficit.


Asunto(s)
Arsénico/toxicidad , Fertilidad/efectos de los fármacos , Reproducción/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...